Decreased lncRNA SNHG16 Accelerates Oxidative Stress Induced Pathological Angiogenesis in Human Retinal Microvascular Endothelial Cells by Regulating miR-195/mfn2 Axis

Author:

Zhang Rui1,Ma Xiaoying1,Jiang Lei1,Xia Wenzhen1,Li Haipeng1,Zhao Na1,Cui Ximing2,Zhang Nan1,Zhou Huimin1,Xu Shunjiang1

Affiliation:

1. Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China

2. Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, China

Abstract

Background: This study was performed to identify the alterations of Long non-coding RNAs (lncRNAs) induced by oxidative stress and investigate the functional roles of SNHG16 in the pathological angiogenesis by human retinal microvascular endothelial cells (HMRECs). Methods: The expression profiles of lncRNAs and mRNAs induced by oxidative stress were identified by RNA-Seq, and the dysregulation of 16 lncRNAs including SNHG16 was verified in H2O2-treated human umbilical vein endothelial cells (HUVECs). Luciferase reporter assay and RIP analysis were used to investigate the binding relationship of SNHG16 to miR-195. Results: We confirmed that over-expression of SNGH16 attenuated H2O2-induced angiogenesis by HMRECs. In addition, SNHG16 was significantly decreased, whereas miR-195, a predictive target of SNHG16, was upregulated in H2O2, HG, and AGE-treated HMRECs. The binding relationship of SNHG16 to miR-195 was subsequently verified by luciferase reporter assay and RIP analysis. SNHG16 cotransfection abolished miR-195-mediated repression on mitofusin 2 (mfn2) protein level and counteracted the inductive effect of miR-195 on angiogenesis by HMRECs. Conclusion: These results indicated that decreased SNHG16 accelerates oxidative stress-induced pathological angiogenesis in HMRECs by regulating the miR-195/mfn2 axis, providing a potential target for diabetic retinopathy (DR) therapy.

Funder

Health Commission of Hebei Province Program

Science and Technology project of the People's Livelihood in Hebei Province

Hebei Provincial Natural Science Foundation

National Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3