Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis

Author:

Malekmohammad Khojasteh1ORCID,Sewell Robert D.E.2ORCID,Rafieian-Kopaei Mahmoud3ORCID

Affiliation:

1. Department of Biology, Faculty of Basic Sciences, Shiraz University, Shiraz, Iran

2. Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom

3. Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Background and objective: Atherosclerosis is one of the leading causes of human morbidity globally and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine) or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine) or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and treatment of atherosclerosis. Methods: The material in this article was obtained from noteworthy scientific databases, including Web of Science, PubMed, Science Direct, Scopus and Google Scholar. Results: Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C (PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress. Conclusion: Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3