Affiliation:
1. Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
Abstract
:
Adenosine receptors (ARs) are transmembrane proteins that belong to the G protein-coupled receptors
(GPCRs) superfamily and mediate the biological functions of adenosine. To date, four AR subtypes are known,
namely A1, A2A, A2B and A3 that exhibit different signaling pathways, tissue localization, and mechanisms of
activation. Moreover, the widespread ARs and their implication in numerous physiological and pathophysiological
conditions had made them pivotal therapeutic targets for developing clinically effective agents.
:
The crystallographic success in identifying the 3D crystal structures of A2A and A1 ARs has dramatically enriched
our understanding of their structural and functional properties such as ligand binding and signal transduction.
This, in turn, has provided a structural basis for a larger contribution of computational methods, particularly molecular
dynamics (MD) simulations, toward further investigation of their molecular properties and designing
bioactive ligands with therapeutic potential. MD simulation has been proved to be an invaluable tool in investigating
ARs and providing answers to some critical questions. For example, MD has been applied in studying ARs
in terms of ligand-receptor interactions, molecular recognition, allosteric modulations, dimerization, and mechanisms
of activation, collectively aiding in the design of subtype selective ligands.
:
In this review, we focused on the advances and different applications of MD simulations utilized to study the
structural and functional aspects of ARs that can foster the structure-based design of drug candidates. In addition,
relevant literature was briefly discussed which establishes a starting point for future advances in the field of drug
discovery to this pivotal group of drug targets.
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmacology
Reference241 articles.
1. Ballesteros JA, Weinstein H.
2. Kolakowski LF. GCRDb: A G-protein-coupled receptor database.
3. Isberg V, Vroling B, van der Kant R, Li K, Vriend G, Gloriam D. GPCRDB: An information system for G protein-coupled receptors.
4. Isberg V, de Graaf C, Bortolato A. Generic GPCR residue numbers - aligning topology maps while minding the gaps.
5. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献