Triple Action of Lignosulfonic Acid Sodium: Anti-protease, Antioxidant, and Anti-inflammatory Effects of a Polymeric Heparin Mimetic

Author:

Al-Horani Rami A.1ORCID,Aliter Kholoud F.2

Affiliation:

1. Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA

2. Department of Chemistry, School of STEM, Dillard University, New Orleans, LA, 70122, USA

Abstract

Background: Heparins are sulfated glycosaminoglycans that are used as anticoagulants to treat thrombosis. Heparins exhibit other potential therapeutic effects, such as anti-inflammatory, anti-viral, and anti-malarial effects. However, the strong anticoagulant activity of heparins poses a risk of life-threatening bleeding, limiting their therapeutic use for other diseases beyond thrombosis. To exploit the other effects of heparins and eliminate the bleeding risk, we explored an alternative polymer called lignosulfonic acid sodium (LSAS), which acts as a sulfonated heparin mimetic. LSAS targets factor XIa to exert an anticoagulant effect, and thus, unlike heparins, it is unlikely to cause bleeding. Methods: This study investigated the multiple effects of LSAS to identify potential leads for complex pathologies treatment. A series of chromogenic substrate hydrolysis assays were used to evaluate the inhibition of three inflammation-related proteases by LSAS. Its chemical antioxidant activity against the system of ABTS/hydrogen peroxide/metmyoglobin was also determined. Lastly, the effect of LSAS on TNFα-induced activation of the NF-κB pathway in HEK-293 cells was also tested to determine its cellular anti-inflammatory activity. Results: The results showed that LSAS effectively inhibited human neutrophil elastase, cathepsin G, and plasmin, with IC50 values ranging from 0.73 to 212.5 μg/mL. Additionally, LSAS demonstrated a significant chemical antioxidant effect, with an IC50 value of 44.1 μg/mL. Furthermore, at a concentration of approximately 530 μg/mL, LSAS inhibited the TNFα-induced activation of the NF-κB pathway in HEK-293 cells, indicating a substantial anti-inflammatory effect. An essential advantage of LSAS is its high water solubility and virtual non-toxicity, making it a safe and readily available polymer. Conclusion: Based on these findings, LSAS is put forward as a polymeric heparin mimetic with multiple functions, serving as a potential platform for developing novel therapeutics to treat complex pathologies.

Funder

NIGMS, National Institute of General Medical Sciences

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3