Synthesis and Structural Activity Relationship Study of Ursolic Acid Derivatives as Antitubercular Agent

Author:

Vishwakarma Sadhna1,Srivastava Santosh Kumar1,Khare Naveen K.2,Chaubey Shiwa2,Chaturvedi Vinita3,Trivedi Priyanka3,Khan Sana4,Khan Feroz4

Affiliation:

1. Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow 226015, India

2. Department of Chemistry, University of Lucknow, Lucknow-226007, India

3. Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow-226031, India

4. Metabolic and structural biology department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow-226015, India

Abstract

Objective: The chemical transformation of ursolic acid (UA) into novel C-3 aryl ester derivatives and in vitro and silico assessment of their antitubercular potential. Background: UA is a natural pentacyclic triterpenoid with many pharmacological properties. Semisynthetic UA analogs have demonstrated enhanced anticancer, antimalarial, and antifilarial properties in our previous studies. Method: The C-30 carboxylic group of previously isolated UA was protected, and various C-3 aryl ester derivatives were semi-synthesized. The agar dilution method was used to evaluate the in vitro antitubercular efficacy of Mycobacterium tuberculosis (Mtb) H37Ra. In silico docking studies of the active derivative were carried out against Mtb targets, catalase peroxidase (PDB: 1SJ2), dihydrofolate reductase (PDB: 4M2X), enoyl-ACP reductase (PDB: 4TRO), and cytochrome bc1 oxidase (PDB: 7E1V). Results: The derivative 3-O-(2-amino,3-methyl benzoic acid)-ethyl ursolate (UA-1H) was the most active among the eight derivatives (MIC1 2.5 µg/mL) against Mtb H37Ra. Also, UA-1H demonstrated significant binding affinity in the range of 10.8–11.4 kcal/mol against the antiTb target proteins, which was far better than the positive control Isoniazid, Ethambutol, and co-crystallized ligand (HEM). Moreover, the predicted hit UA-1H showed no inhibition of Cytochrome P450 2D6 (CYP2D6), suggesting its potential for favorable metabolism in Phase I clinical studies. Conclusion: The ursolic acid derivative UA-1H possesses significant in vitro antitubercular potential with favorable in silico pharmacokinetics. Hence, further in vivo assessments are suggested for UA-1H for its possible development into a secure and efficient antitubercular drug.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3