A Dynamic Context Encoder Network for Liver Tumor Segmentation

Author:

Liu Jun1,Fang Jing1,Jiang Tao1,Zhou Chaochao2,Shao Liren1,Song Yusheng3

Affiliation:

1. Department of Information Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China

2. Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, U.S

3. Interventional Radiology, The People's Hospital of Ganzhou, Ganzhou, Jiangxi 341000, China

Abstract

Background: Accurate segmentation of liver tumor regions in medical images is of great significance for clinical diagnosis and the planning of surgical treatments. Recent advancements in machine learning have shown that convolutional neural networks are powerful in such image processing while largely reducing human labor. However, the variable shape, fuzzy boundary, and discontinuous tumor region of liver tumors in medical images bring great challenges to accurate segmentation. The feature extraction capability of a neural network can be improved by expanding its architecture, but it inevitably demands more computing resources in training and hyperparameter tuning. Methods: This study presents a Dynamic Context Encoder Network (DCE-Net), which incorporates multiple new modules, such as the Involution Layer, Dynamic Residual Module, Context Extraction Module, and Channel Attention Gates, for feature extraction and enhancement Results: In the experiment, we used a liver tumor CT dataset of LiTS2017 to train and test the DCE-Net for liver tumor segmentation. The experimental results showed that the four evaluation indexes of the method, precision, recall, dice, and AUC, were 0.8961, 0.9711, 0.9270, and 0.9875, respectively. Furthermore, our ablation study reported that the accuracy and training efficiency of our network were markedly superior to the networks without involution or dynamic residual modules. Conclusion: Therefore, the DCE-Net proposed in this study has great potential for automatic segmentation of liver lesion tumors in the clinical diagnostic environment.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3