MRI-based Texture Analysis in Differentiation of Benign and Malignant Vertebral Compression Fractures

Author:

Karabay Nuri1ORCID,Odaman Huseyin1ORCID,Vahaplar Alper2ORCID,Kizmazoglu Ceren3ORCID,Kalemci Orhan3ORCID

Affiliation:

1. Department of Radiology, Dokuz Eylül University, Izmir, Turkey

2. Department of Statistic, Software, NETAŞ Telecommunications, Turkey

3. Department of Neurosurgery, Dokuz Eylül University, Izmir, Turkey

Abstract

Introduction: The diagnosis and characterization of vertebral compression fractures are very important for clinical management. In this evaluation, which is usually performed with diagnostic (conventional) imaging, the findings are not always typical or diagnostic. Therefore, it is important to have new information to support imaging findings. Texture analysis is a method that can evaluate information contained in diagnostic images and is not visually noticeable. This study aimed to evaluate the magnetic resonance images of cases diagnosed with vertebral compression fractures by the texture analysis method, compare them with histopathological data, and investigate the effectiveness of this method in the differentiation of benign and malignant vertebral compression fractures. Methods: Fifty-five patients with a total of 56 vertebral compression fractures were included in the study. Magnetic resonance images were examined and segmented using Local Image Feature Extraction (LIFEx) software, which is an open-source program for texture analysis. The results were compared with the histopathological diagnosis. Results: The application of the Decision Tree algorithm to the dataset yielded impressively accurate predictions (≈95% in accuracy, precision, and recall). Conclusion: Interpreting tissue analysis parameters together with conventional magnetic resonance imaging findings can improve the abilities of radiologists, lead to accurate diagnoses, and prevent unnecessary invasive procedures. Further prospective trials in larger populations are needed to verify the role and performance of texture analysis in patients with vertebral compression fractures.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3