Implications and Applications of Multifunctional Advanced Materials/Gadgets for Energy Conversion and Storage

Author:

Pinki Bentham Science Publisher1,Subhash Bentham Science Publisher1,Chaudhary Ashu1

Affiliation:

1. Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India

Abstract

The expanded interest in vitality assets, extraordinary endeavors, advocacy of convenient hardware and electric vehicles globally animates the improvement of energy storage gadgets, e.g., lithium-ion batteries and supercapacitors, toward higher energy density, which essentially relies on new materials utilized in these gadgets. Besides, energy storage materials assume a key part in productive, clean, and adaptable utilization of energy, and are vital for exploiting sustainable power systems. The usage of the thermal energy storage (TES) framework with phase change material (PCM) is a viable route for energy preservation and green-house gas emission reduction. Ongoing advances in atomically thin two-dimensional transition metal dichalcogenides (2DTMDs) have prompted an assortment of promising innovations for nanoelectronics, photonics, energy storage, and so on. Graphene and graphene-based materials have attracted extraordinary consideration due to their interesting properties of high mechanical adaptability, huge surface zone, chemical stability, prevalent electric and thermal conductivities that render them incredible as alternative electrode materials for electrochemical energy storage frameworks. The straightforward Chemical Vapour Deposition (CVD) and Atomic Layer Deposition (ALD) approaches offer another route for the creation of permeable materials for energy storage. Alteration of organic substrates with inorganic polyoxometalate (POM) clusters can be utilized to build nanocomposite materials with improved properties and various functionalities. Nanotechnology offers up new frontiers in materials research and construction to address the energy challenge by forming novel materials, particularly carbon nanoparticles, for efficient energy transformation and capacity, Polyaniline (PANi) as an auspicious material for energy storage/transformation, is merited for serious investigation and further progress. This book chapter discusses the various methods in materials for energy, their storage, and applications in numerous fields.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3