The Role of circRNA-miRNA-mRNA Regulatory Network and its Potential Biomarker Function in Colorectal Cancer

Author:

Fu Xutang1,Chen Pengpeng1,Wang Hao2ORCID

Affiliation:

1. Department of Oncological Surgery, Hospital of Pan’an County (Jinhua Central Hospital Pan'an Branch), Jinhua, Republic of China

2. Department of Oncological Surgery, Jinhua Polytechnic, Jinhua, Republic of China

Abstract

Background: Revealing the process and mechanism of colorectal cancer will facilitate the discovery of new biomarkers and contribute to the development of targeted drugs. Objective: This study aimed to explore the potentially functional circRNA-miRNA-mRNA network in colorectal cancer (CRC), and further explore its mechanism. Methods: Bioinformatics analysis was used to identify the differentially expressed circRNAs and mRNAs. Gene set enrichment analysis and KEGG pathways analysis were used to screen out the differentially expressed genes and observe crucial pathways that might have a strong association with CRC. Then, a network targeting circRNA, miRNA, and mRNA has been built by using the Cytoscape software. In addition, the expression of circRNA_0001573, miR-382-5p, and FZD3 was detected by qRT-PCR in CRC tissues and cells (SW480, HCT116, and HT29). Results: Abnormal expressions of circRNAs and mRNAs were obtained by bioinformatics analysis and visualized by Volcano plot and Heatmap. A series of highly correlated pathways were enriched by KEGG analysis. The interaction network of circRNA_0001573/miR-382-5p/FZD3 axis was predicted. The expressions of circRNA_0001573 and FZD3 were highly upregulated and the miR- 382-5p expression level was decreased in CRC tissues and cell lines (SW480, HCT116, and HT29). Conclusion: Our study suggests that circRNA_0001573 and circRNA_0001573/miR-382-5p/FZD3 regulatory networks might provide a potential diagnosis for colorectal cancer.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3