An Improved Computational Prediction Model for Lysine Succinylation Sites Mapping on Homo sapiens by Fusing Three Sequence Encoding Schemes with the Random Forest Classifier

Author:

Tasmia Samme Amena1,Ahmed Fee Faysal2,Mosharaf Parvez1,Hasan Mehedi3,Mollah Nurul Haque1

Affiliation:

1. Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi-6205, Bangladesh

2. Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh

3. Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan

Abstract

Background: Lysine succinylation is one of the reversible protein post-translational modifications (PTMs), which regulate the structure and function of proteins. It plays a significant role in various cellular physiologies including some diseases of human as well as many other organisms. The accurate identification of succinylation site is essential to understand the various biological functions and drug development. Methods:: In this study, we developed an improved method to predict lysine succinylation sites mapping on Homo sapiens by the fusion of three encoding schemes such as binary, the composition of kspaced amino acid pairs (CKSAAP) and amino acid composition (AAC) with the random forest (RF) classifier. The prediction performance of the proposed random forest (RF) based on the fusion model in a comparison of other candidates was investigated by using 20-fold cross-validation (CV) and two independent test datasets were collected from two different sources. Results: The CV results showed that the proposed predictor achieves the highest scores of sensitivity (SN) as 0.800, specificity (SP) as 0.902, accuracy (ACC) as 0.919, Mathew correlation coefficient (MCC) as 0.766 and partial AUC (pAUC) as 0.163 at a false-positive rate (FPR) = 0.10 and area under the ROC curve (AUC) as 0.958. It achieved the highest performance scores of SN as 0.811, SP as 0.902, ACC as 0.891, MCC as 0.629 and pAUC as 0.139 and AUC as 0.921 for the independent test protein set-1 and SN as 0.772, SP as 0.901, ACC as 0.836, MCC as 0.677 and pAUC as 0.141 at FPR = 0.10 and AUC as 0.923 for the independent test protein set-2. It also outperformed all the other existing prediction models. Conclusion: The prediction performances as discussed in this article recommend that the proposed method might be a useful and encouraging computational resource for lysine succinylation site prediction in the case of human population.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3