Phenolic Bisabolane Sesquiterpene Derivatives from an Arctic Marine-derived Fungus Aspergillus sydowii MNP-2

Author:

Fu Zhiyang1,Gong Xiangzhou1,Hu Zhe1,Zhao Yujie1,Zhang Huawei1

Affiliation:

1. School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China

Abstract

Background:: Filamentous fungi in the genus Aspergillus are well known for their important roles in production of bioactive secondary metabolites with diversely chemical structures and potential application in pharmaceutical industry. Objective:: The present study aimed to investigate the phenolic bisabolane sesquiterpene (PBS) derivatives from an Arctic marine-derived fungus Aspergillus sydowii MNP-2. Methods:: In this study, antimicrobial activities were carried out according to the broth microdilution assay, nitric oxide (NO) production in mouse macrophages (RAW264.7) and BV2 microglial cells was used to detect the inhibitory effect of compounds in inflammatory reactions, and in vitro inhibitory cell proliferation activity was determined by the cell counting kit-8 (CCK-8) assay. Results:: In this work, chemical investigation of an Arctic marine-derived strain A. sydowii MNP-2 led to the isolation of 11 PBSs (1-11) using various chromatographic methods. Their chemical structures were unambiguously determined by 1H NMR spectroscopy and mass spectrometry analyses as well as comparison with literature data. It is noteworthy that compounds 1, 7 and 11 were firstly obtained from A. sydowii. Antimicrobial assay showed that these chemicals had no potent inhibitory effect on Staphylococcus aureus, Escherichia coli, and Candida albicans with MIC values > 16 μg/mL. Additionally, the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)- induced inflammation in mouse macrophages (RAW264.7) and BV2 microglial cells were all below 10% for compounds 4-6 and 8, indicating almost negligible anti-inflammatory efficacy. Among the tested compounds 4-6 and 8 for tumor-cell proliferation inhibition activities, compound 5 demonstrated the strongest inhibitory effect against human acute promyelocytic leukemia cells (HL-6) with a 44.76% inhibition rate. Conclusion:: In the present study, 11 PBS derivatives were purified and characterized from the solidand liquid-state fermentations of the Arctic marine-derived fungus A. sydowii MNP-2. Unfortunately, none of these metabolites had significant antimicrobial, anti-inflammatory, or tumor-cell proliferation inhibition activities.

Funder

National Key Research and Development Program of China

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3