Comparative Activity of Adenosine Deaminase Acting on RNA (ADARs) Isoforms for Correction of Genetic Code in Gene Therapy

Author:

Azad Md. Thoufic A.1,Qulsum Umme1,Tsukahara Toshifumi1

Affiliation:

1. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923- 1292, Japan

Abstract

Introduction: Members of the adenosine deaminase acting on RNA (ADAR) family of enzymes consist of double-stranded RNA-binding domains (dsRBDs) and a deaminase domain (DD) that converts adenosine (A) into inosine (I), which acts as guanosine (G) during translation. Using the MS2 system, we engineered the DD of ADAR1 to direct it to a specific target. The aim of this work was to compare the deaminase activities of ADAR1-DD and various isoforms of ADAR2-DD. Materials and Methods: We measured the binding affinity of the artificial enzyme system on a Biacore ™ X100. ADARs usually target dsRNA, so we designed a guide RNA complementary to the target RNA, and then fused the guide sequence to the MS2 stem-loop. A mutated amber (TAG) stop codon at 58 amino acid (TGG) of EGFP was targeted. After transfection of these three factors into HEK 293 cells, we observed fluorescence signals of various intensities. Results: ADAR2-long without the Alu-cassette yielded a much higher fluorescence signal than ADAR2-long with the Alu-cassette. With another isoform, ADAR2-short, which is 81 bp shorter at the C-terminus, the fluorescence signal was undetectable. A single amino acid substitution of ADAR2-long-DD (E488Q) rendered the enzyme more active than the wild type. The results of fluorescence microscopy suggested that ADAR1-DD is more active than ADAR2-long-DD. Western blots and sequencing confirmed that ADAR1-DD was more active than any other DD. Conclusion: This study provides information that should facilitate the rational use of ADAR variants for genetic restoration and treatment of genetic diseases.

Funder

Japan Society for the Promotion of Science

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics(clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3