Proteome Analysis Revealed Jak/Stat Signaling and Cytoskeleton Rearrangement Proteins in Human Lung Epithelial Cells During Interaction with Aspergillus terreus

Author:

Thakur R.1,Shankar J.1

Affiliation:

1. Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan-173234 Himachal Pradesh, India

Abstract

Background: Aspergillus terreus is an emerging etiological agent of invasive and allergic aspergillosis in immunocompromised individuals. The main risk groups are individuals having cancer, acute leukemia and those who undergo bone marrow transplantation. The human lung epithelial cells constitute the first line of defense against inhaled conidia of A. terreus. The aim of the study was to understand how human lung epithelial cells respond to A. terreus conidia during the interaction and to decipher proteins/pathways underlying in host defense. Methods: Protein samples were extracted from human lung epithelial cells (A549) infected with and without A. terreus conidia. Proteins were identified using QTOF-LC-MS/MS followed by analysis using Protein Lynx Global Services software (2.2.5) against Homo sapiens UniProt database. Results: A total of 1253 proteins in human lung epithelial cells were identified during the interaction with Aspergillus terreus conidia, whereas 427 proteins were identified in uninfected lung epithelial cells. We have observed 63 proteins in both the conditions. Gene ontology and KEEG pathway analysis of proteins from infected lung epithelial cells showed proteins from cytoskeleton rearrangement, transport, transcription and signal transduction pathways, such as Jak/Stat, NOD like receptor signaling, Toll–like receptor signaling, NF-kβ signaling and TNF signaling pathways. These signaling proteins suggested the strong immune response in lung epithelial cells against A. terreus conidia. Also, cytoskeleton rearrangement proteins depicted the internalization of A. terreus conidia by human lung epithelial cells. Conclusion: Our study has contributed to understand the interaction response of human lung epithelial cells during A. terreus infection. Also, our study may facilitate the identification of inflammatory biomarker against A. terreus.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3