Affiliation:
1. Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan-173234 Himachal Pradesh, India
Abstract
Background:
Aspergillus terreus is an emerging etiological agent of invasive and
allergic aspergillosis in immunocompromised individuals. The main risk groups are individuals
having cancer, acute leukemia and those who undergo bone marrow transplantation. The human
lung epithelial cells constitute the first line of defense against inhaled conidia of A. terreus. The
aim of the study was to understand how human lung epithelial cells respond to A. terreus conidia
during the interaction and to decipher proteins/pathways underlying in host defense.
Methods:
Protein samples were extracted from human lung epithelial cells (A549) infected with
and without A. terreus conidia. Proteins were identified using QTOF-LC-MS/MS followed by
analysis using Protein Lynx Global Services software (2.2.5) against Homo sapiens UniProt
database.
Results:
A total of 1253 proteins in human lung epithelial cells were identified during the
interaction with Aspergillus terreus conidia, whereas 427 proteins were identified in uninfected
lung epithelial cells. We have observed 63 proteins in both the conditions. Gene ontology and
KEEG pathway analysis of proteins from infected lung epithelial cells showed proteins from
cytoskeleton rearrangement, transport, transcription and signal transduction pathways, such as
Jak/Stat, NOD like receptor signaling, Toll–like receptor signaling, NF-kβ signaling and TNF
signaling pathways. These signaling proteins suggested the strong immune response in lung
epithelial cells against A. terreus conidia. Also, cytoskeleton rearrangement proteins depicted the
internalization of A. terreus conidia by human lung epithelial cells.
Conclusion:
Our study has contributed to understand the interaction response of human lung
epithelial cells during A. terreus infection. Also, our study may facilitate the identification of
inflammatory biomarker against A. terreus.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology (medical),Endocrinology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献