In Vivo Evaluation of Chitosan-Titanium Dioxide Nanopowder as Wound Dressing Material

Author:

Al-Nemrawi Nusaiba1ORCID,Darweesh Ruba S.1,Alrousan Dana1

Affiliation:

1. Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan

Abstract

Background: Films used for wound healing have many advantages, but should be flexible, robust, adherable and prevent maceration. Both Chitosan (CS) and Titanium dioxide nanopowder (TiO2 NP) have good properties to accelerate wound healing and can be used in preparing films. Objective: CS and TiO2 NP are combined to formulate films for wound healing. The physical, thermal, chemical, and mechanical characteristics of these films are to be assessed. The antibacterial activity of the films and their performance on wounded rats will be explored. Methods: Films made of CS and TiO2 NP were characterized by FTIR, TGA, DSC, XRD, and SEM. The films' mechanical characteristics and antimicrobial activity were tested. Films with acceptable mechanical properties were evaluated on rats. Results: Generally, CS-TiO2 films had higher weight and thickness but lowered flexibility compared to films prepared using CS only. The chosen film showed excellent folding endurance with weight and thickness of around 21.98 mg and 0.16 mm. The surface pH for CS-TiO2 films was acidic, and for the selected film, it was 5.18. CS-TiO2 film was active against all studied bacteria and significantly higher than CS films. The antimicrobial activity of Gram-negative bacteria (P. aeruginosa and E. coli) was higher than that of Gram-positive bacteria (S. aureus). Finally, adding TiO2 NP to the films accelerated the healing process of the created wounds in a murine model, compared to control and CS-treated groups. Conclusion: Films of TiO2 NP and CS have suitable properties to be used in wound healing and can be further used in the future to load drugs.

Funder

Deanship of Research at Jordan University of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3