Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

HAND2-AS1 Promotes Ferroptosis to Reverse Lenvatinib Resistance in Hepatocellular Carcinoma by TLR4/NOX2/DUOX2 Axis

In Press, (this is not the final "Version of Record"). Available online 07 March, 2024
Author(s): Zheng Song, Yu Zhang, Wei Luo, Chao Sun, Caihong Lv, Sihao Wang, Quanwei He, Ran Xu, Zhaofang Bai, Xiujuan Chang and Yongping Yang*
Published on: 07 March, 2024

DOI: 10.2174/0115680096279597240219055135

Price: $95

Abstract

Introduction: Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers.

Methods: Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis.

Results: A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection.

Conclusion: These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.

Keywords: Hepatocellular carcinoma, cancer, deaths, reactive oxygen species, cells, lenvatinib.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy