Quantum Dots Functionalized Polymeric Nanoparticles as Cancer Theranostics: An Advanced Nanomedicine Strategy

Author:

Panchal Honey1,Panjwani Drishti1,Patel Shruti1,Ahlawat Priyanka1,Patel Laxmanbhai Dungabhai1,Dharamsi Abhay1,Patel Asha1

Affiliation:

1. Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India

Abstract

Background: Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics. Objective: This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics. Methods: This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method. Results: Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer. Conclusion: Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3