New Carbothioamide and Carboxamide Derivatives of 3-Phenoxybenzoic Acid as Potent VEGFR-2 Inhibitors: Synthesis, Molecular Docking, and Cytotoxicity Assessment

Author:

Heriz Mohammad Hamza1,Mahmood Ammar A. Razzak2,Tahtamouni Lubna H.34,AlSakhen Mai F.3,Kanaan Sana I.3,Saleh Khaled M.3,Yasin Salem R.3

Affiliation:

1. Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Al-Zahraa University for Women, Karbala-Baghdad Street, Karbala, Iraq

2. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Almoudam, 10001, Baghdad, Iraq

3. Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan

4. Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA

Abstract

Introduction/Background: Because of the well-established link between angiogenesis and tumor development, the use of antiangiogenic therapeutics, such as those targeting VEGFR-2, presents a promising approach to cancer treatment. In the current study, a set of five hydrazine-1-- carbothioamide (compounds 3a-e) and three hydrazine-1-carboxamide derivatives (compounds 4a-c) were successfully synthesized from 3-phenoxybenzoic acid. These compounds were specially created as antiproliferative agents with the goal of targeting cancer cells by inhibiting VEGFR-2 tyrosine kinase. Materials and Methods: The new derivatives were synthesized by conventional organic methods, and their structure was versified by IR, 1HNMR, 13CNMR, and mass spectroscopy. In silico investigation was carried out to identify the compounds’ target, molecular similarity, ADMET, and toxicity profile. The cytotoxic activity of the prepared compounds was evaluated in vitro against three human cancer cell lines (DLD1 colorectal adenocarcinoma, HeLa cervical cancer, and HepG2 hepatocellular carcinoma). The effects of the leading compound on cell cycle progression and apoptosis induction were investigated by flow cytometry, and the specific apoptotic pathway triggered by the treatment was evaluated by RT-PCR and immunoblotting. Finally, the inhibitory activities of the new compounds against VEGFR-2 was measured. Results: The designed derivatives exhibited comparable binding positions and interactions to the VEGFR-2 binding site to that of sorafenib (a standard VEGFR-2 tyrosine kinase inhibitor), as determined by molecular docking analysis. Compound 4b was the most cytotoxic compound, achieving the lowest IC50 against HeLa cells. Compound 4b, a strong representative of the synthesized series, induced cell cycle arrest at the G2/M phase, increased the proportion of necrotic and apoptotic HeLa cells, and activated caspase 3. The EC50 value of compound 4b against VEGFR-2 kinase activity was comparable to sorafenib’s. Conclusion: Overall, the findings suggest that compound 4b has a promising future as a starting point for the development of new anticancer drugs.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3