Investigation of the Apoptosis Inducing and β-catenin Silencing by Tetradentate Schiff Base Zinc(II) Complex on the T-47D Breast Cancer Cells

Author:

Majd Mostafa Heidari1ORCID,Guo Xiangyu2ORCID

Affiliation:

1. Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran

2. Department of Breast Medicine, Cancer Hospital Chinese Academy of Medical Science, Liaoning Provincial Cancer Hospital, Shenyang, Liaoning, 110042, China

Abstract

Introduction: Several mechanisms are known for the anticancer effects of cisplatin. However, its most wellknown function involves binding to DNA and activating the DNA damage response. Methods:: Despite its good effects, the treatment process often leads to chemoresistance and affects the mechanisms that support cell survival, such as pathways that promote cell growth, apoptosis, DNA damage repair, and endocytosis. For this reason, we investigated the effects of a new metal complex (tetradentate Schiff base zinc(II) complex) on breast cancer cells (T-47D). We evaluated its effect on cytotoxicity, apoptosis, and drug resistance in comparison to cisplatin. Results: The results of the MTT test showed that tetradentate Schiff base zinc(II) complex has good cytotoxicity compared to cisplatin. The IC50 values for the [Zn(SB)]Cl2 complex and cisplatin after 72 h of exposure were equal to 42.1 and 276.1 μM, respectively. Real-time PCR assay confirmed that the [Zn(SB)]Cl2 complex activated the mitochondrial pathway of apoptosis and increased the expression of Bak1 and caspase-3 genes significantly compared to cisplatin. More importantly, the [Zn(SB)]Cl2 was able to reduce the expression of the β-catenin gene, which plays a role in drug resistance, by 0.011 compared to the control. Conclusion: Therefore, we can hope for this new complex because, without the help of any β-catenin silencing agent, it was able to inhibit the drug resistance in the T-47D cell line that overexpresses the β-catenin gene.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3