Design, Synthesis and Biological Evaluation of Novel Quinoline Derivatives as Potential Anti-Proliferative Agents Against PC-3 and KG-1 Cells

Author:

Zhang Wei1,Ma Peizhi1,Li Kun1,Xu Yuanbo2,Sun Jun1

Affiliation:

1. Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou 450003, China

2. Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

Abstract

Background: Cancer is a major public health problem worldwide, and is the leading cause of death. The discovery and development of cancer therapeutic drugs have become the most urgent measure, which significantly benefited from the usage of small molecule compounds. The quinoline core possessed a vast number of biological activities that were found to be imperative. Objective: The aim is to design, synthesize and perform the biological evaluation of novel quinoline derivatives as potential anti-proliferative agents. Methods: Quinoline as a privileged scaffold was adopted to introduce diverse effective nitrogen heterocycles through different linkers. The synthesized compounds were spectroscopically characterized and evaluated for their anti-proliferative activity using the CCK8 assay. The mechanism of action was investigated by flow cytometry and the inhibitory activity against Pim-1 kinase was measured by mobility shift assay. Molecular docking analysis was performed to rationalize biochemical potency as well. Results: The majority of these quinolines displayed potent growth inhibitory effects, among which compounds 13e, 13f and 13h were the most effective ones, with GI50 values of 2.61/3.56, 4.73/4.88 and 4.68/2.98 μM, respectively. Structure-activity relationships indicated that both appropriate heterocycles at the C4 position of pyridine and suitable substituent at quinoline had a significant impact on improving activity. Compounds 13e and 24d exhibited moderate Pim-1 kinase inhibitory activity. Conclusion: In this study, three series of novel molecules bearing quinoline scaffold were designed, synthesized and evaluated for their in-vitro anti-proliferative activity. The most promising candidate, 13e, caused cell cycle arrest in a concentration-dependent manner and further induced apoptosis, which might represent a novel antiproliferative agent working through Pim-1 kinase inhibition to a certain extent.

Funder

National Natural Science Foundation of China

Key R&D and Promotion Program in Henan Province

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3