Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I

Author:

Demir Yeliz1ORCID,Türkeş Cüneyt2ORCID,Beydemir Şükrü3ORCID

Affiliation:

1. Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey

2. Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey

3. Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey

Abstract

Background: Currently, most of the drugs used in clinical applications show their pharmacological influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug design for many diseases. Objective: The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and development) by analyzing enzyme-drug interactions. Methods: For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched on the PON1. Results: The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM, 30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition, while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of -5.46 and -8.43 kcal/mol, respectively. Conclusion: The interaction studies indicated that these agents with the PON1 possess binding affinity.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3