Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma

Author:

Kara Altan1,Özgür Aykut2,Tekin Şaban3,Tutar Yusuf4

Affiliation:

1. TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey

2. Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, Turkey

3. TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey | University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, Turkey | University of Health Sciences, Experimental Medicine Application & Research Center, Validebag Research Park, İstanbul, Turkey

4. University of Health Sciences, Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, İstanbul, Turkey | University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, Turkey

Abstract

Background: Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. Objective: In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. Methods: Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. Results: This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. Conclusion: To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3