Patterns of Cell Death Induced by Thiohydantoins in Human MCF-7 Breast Cancer Cells

Author:

Fagundes Tatiane Renata1ORCID,Bortoleti Bruna2ORCID,Camargo Priscila3ORCID,Concato Vírgínia1ORCID,Tomiotto-Pellissier Fernanda2ORCID,Carloto Amanda1ORCID,Panis Carolina4ORCID,Bispo Marcelle3ORCID,Junior Fernando Macedo2ORCID,Conchon-Costa Ivete1ORCID,Pavanelli Wander1ORCID

Affiliation:

1. Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil

2. Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil

3. Laboratory of Properties and Synthesis of Organic Substances, Department of Chemistry, Center of Exact Sciences, Londrina State University, PR, Brazil

4. Laboratory of Tumor Biology, State University of Western Paraná, Francisco Beltrão, Paraná, Brazil

Abstract

Background: Conventional therapies for breast cancer is still a challenge due to use of cytotoxic drugs not highly effective with major adverse effects. Thiohydantoins, are biologically active heterocyclic compounds reported by several biological activities, including anticarcinogenic properties, i.e., this work aimed to assess the use of thiohydantoin as a potential antitumor agent against MCF-7 breast cancer cells. Methods: MTT and neutral red assays were used to assess the possible cytotoxic activity of compounds against MCF-7 cells. Cell volume measurement and analysis were performed by flow cytometry, fluorescence analysis was carried out to determine patterns of cell death induced by thiohydantoins. Results: The treatment with micromolar doses of thiohydantoins promoted a decrease in the viability of MCF-7 breast tumor cells. Also were observed the increase in ROS and NO production, reduction in cell volume, loss of membrane integrity, mitochondrial depolarization, and increased fluorescence for annexin V and caspase-3. These findings indicate cell death by apoptosis and increased formation of autophagic vacuoles and stopping the cell cycle in the G1/ G0 phase. Conclusions: Our results indicate that thiohydantoins are cytotoxic to breast tumor cells, and this effect is linked to the increase in ROS production. This phenomenon changes tumorigenic pathways, that lead to a halt of the cell cycle in G1/G0, an important checkpoint for DNA errors, which may have altered the process by which cells produce energy, causing a decrease in mitochondrial viability and thus leading to the apoptotic process. Furthermore, the results indicate increased autophagy, a vital process linked to a decrease in lysosomal viability and considered as a cell death and tumor suppression mechanism.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3