Dexmedetomidine Attenuates Spinal Cord Ischemia-reperfusion Injury in Rabbits by Decreasing Oxidation and Apoptosis

Author:

Zhou Daiwei1,Xiao Xiaoshan2,Liu Bingbing2,Liang Yatong3,Huang Weihua3,Zhang Hui2

Affiliation:

1. Department of Anesthesiology, Guangdong Second Provincial General Hospital; Zhuhai High-Tech Zone People’s Hospital; Zhuhai, China

2. Department of Anesthesiology, Guangdong Second Provincial General Hospital; The Second School of Clinical Medicine, Southern Medical University; Guangzhou, China

3. Department of Anesthesiology, Guangdong Second Provincial General Hospital; Guangzhou, China

Abstract

Background: In brain ischemia, dexmedetomidine (DEX) prevents glutamate and norepinephrine changes, increases nerve conduction, and prevents apoptosis, but the mechanisms are poorly understood. Objective: This study aimed at examining the protective effect and function of DEX on spinal cord ischemia-reperfusion injury (SCIRI) and whether the effect is mediated by oxidative stress and apoptosis (with the involvement of Bcl-2, Bax, mitochondria, and Caspase-3). Methods: Rabbits were randomly divided into the sham group, infusion/reperfusion (I/R) group, and DEX+I/R group. SCIRI was induced by occluding the aorta just caudal to the left renal artery for 40 min, followed by reperfusion. DEX was continuously administered for 60 min before clamping. The animals were evaluated for neuronal functions. Spinal cord tissues were examined for SOD activity and MDA content. Bcl-2, Bax, and Caspase-3 expressions were detected by western blotting. TUNEL staining was used for apoptosis. Results: With the extension of reperfusion time, the hind limbs’ neurological function in the DEX+I/R group gradually improved, but it became worse in the I/R group (all P<0.05 vs. the other time points within the same groups). Compared with I/R, DEX decreased MDA and increased SOD (P<0.01), upregulated Bcl-2 protein expression (P<0.05), downregulated Bax expression (P<0.05), decreased caspase-3 expression (P<0.05), prevented histological changes in neurons, and decreased the apoptotic index of the TUNEL labeling (P<0.05). Conclusion: DEX could attenuate SCIRI in rabbits by improving the oxidative stress status, regulating the expression of apoptosis-related proteins, and decreasing neuronal apoptosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3