Hepatocyte Growth Factor Secreted from Human Adipose-Derived Stem Cells Inhibits Fibrosis in Hypertrophic Scar Fibroblasts

Author:

Ma Ji1,Yan Xin2,Lin Yue2,Tan Qian1

Affiliation:

1. Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China

2. Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China

Abstract

Aims: To study the effect of Adipose-derived stem cells (ADSCs) on fibrosis of hypertrophic scar-derived fibroblasts (HSFs) and its concrete mechanism. Background: ADSCs have been reported to reduce collagen production and fibroblast proliferation in co-culture experiments. Conditioned medium from adipose-derived stem cells (ADSCs-CM) has successfully inhibited fibrosis by decreasing the expression of collagen type І (Col1) and α-smooth muscle actin (α-SMA) in rabbit ear scar models. Hepatocyte growth factor (HGF), the primary growth factor in ADSCs-CM, has been shown to reverse fibrosis in various fibrotic diseases. Background: ADSCs have been reported to reduce collagen production and fibroblast proliferation in co-culture experiments. Conditioned medium from adipose-derived stem cells (ADSCs-CM) has successfully inhibited fibrosis by decreasing the expression of collagen type І (Col1) and α-smooth muscle actin (α-SMA) in rabbit ear scar models. Hepatocyte growth factor (HGF), the primary growth factor in ADSCs-CM, has been shown to reverse fibrosis in various fibrotic diseases. Objective: To test the hypothesis that ADSCs inhibit fibrosis of HSFs through the secretion of HGF. Methods: HSFs were treated with DMEM containing 0%, 10%, 50% and 100% concentration of ADSCs-CM. The effect of ADSCs-CM on the viability was determined by cell viability assay, and the collagen production in HSFs was examined by Sirius red staining. Expression and secretion of fibrosis and degradation proteins were detected separately. After measuring the concentration of HGF in ADSCs-CM, the same number of HSFs were treated with 50% ADSCs-CM or HGF. HGF activity in ADSCs-CM was neutralized with a goat anti-human HGF antibody. Results: The results demonstrated that ADSCs-CM dose-dependently decreased cell viability, expression of fibrosis molecules, and tissue inhibitor of metalloproteinases-1 (TIMP-1), and significantly increased matrix metalloproteinase-1 (MMP-1) expression in HSFs. Collagen production and the ratio of collagen type І and type III (Col1/Col3) were also suppressed by ADSCs-CM in a dose-dependent manner. When HSFs were cultured with either 50% ADSCs-CM or HGF (1 ng/ml), a similar trend was observed in gene expression and protein secretion. Adding an HGF antibody to both groups returned protein expression and secretion to basal levels but did not significantly affect the fibrosis factors in the control group. Conclusion: Our findings revealed that adipose-derived stem cell-secreted HGF effectively inhibits fibrosis-related factors and regulates extracellular matrix (ECM) remodeling in hypertrophic scar fibroblasts.

Funder

Project of Nanjing Science and Technology Development

Key Project of Nanjing Bureau of Health

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3