Protective Effect of Quercetin and p-Coumaric Acid (p-CA) Against Cardiotoxicity: An In Silico Study

Author:

Bhadana Renu1,Rani Vibha1

Affiliation:

1. Center of Excellence in Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307, Uttar Pradesh, India

Abstract

Background: Hydroxychloroquine (HCQ) is a common antimalarial drug that has been used effectively in the treatment of various rheumatic and auto-immunity diseases. The major side effects and drawbacks associated with HCQ are cardiotoxicity, retinopathy, gastrointestinal upset, and neuromyopathy however, cardiotoxicity is an increasing concern and it is critical to avoid heart dysfunction induced by HCQ. The present work is focused on receptor and signaling molecules associated with pathways attributing to drug-induced cardiotoxicity. We analyzed the therapeutic efficacy of selected natural products in HCQ-induced cardiotoxicity through insilico. We selected Syzygium cumini polyphenols, quercetin, and p-coumaric acid. The motivation behind selecting quercetin, and p-coumaric acid is their wide applicability as an antioxidative, anti-inflammatory, antiapoptotic, and cardioprotective. Methods: For predicting quercetin, p-coumaric acid, and HCQ toxicity and physicochemical properties, in silico studies were performed using ProTox II and Swiss ADME. We further performed molecular docking using Autodock Vina and Discovery Studio visualizer to find the affinity of selected polyphenols against signaling molecules and receptors. Then we performed network pharmacological studies of selected signaling molecules. Results: We analyzed that the computational method indicated quercetin (Δ G -9.3 kcal/mol) has greater binding affinity than p-Coumaric acid for prevention and restoration of the disease while hydroxychloroquine was taken as a control. Conclusion: It can be concluded that Syzygium cumini, polyphenols may aid in the future therapeutic potential against HCQ-induced cardiotoxicity.

Funder

Council of Scientific & Industrial Research Human Resource Development Group

Publisher

Bentham Science Publishers Ltd.

Subject

Agronomy and Crop Science,Food Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3