Exploiting Dengue Virus Protease as a Therapeutic Target: Current Status, Challenges and Future Avenues

Author:

Mushtaq Mamona1,Naz Sehrish1,Parang Keykavous2,Ul-Haq Zaheer1ORCID

Affiliation:

1. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan

2. Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman, University School of Pharmacy, Harry and Diane Rinker Health Science Campus, California, Irvine, CA 92618, United States

Abstract

Dengue, the oldest and the most prevalent mosquito-borne illness, is caused by the dengue virus (DENV), from the family of Flaviviridae. It infects approximately 400 million individuals per annum, with approximately half of the global population residing in high-risk areas. The factors attributed to the geographic expansion of dengue, include urbanization, population density, modern means of transportation, international travels, habit modification, climate change, virus genetics, vector capacity, and poor vector control. Despite the significant progress made in the past against dengue, no effective antiviral therapy is currently available. Among the structural and non-structural proteins encoded by DENV genome, the NS2B−NS3 protease complex is amongst the extensively studied targets for the development of antiviral therapeutics owing to its multiple roles in virus life cycle. Furthermore, protease inhibitors were found to be successful in Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). Likewise, several peptidic, peptide derived/peptidomimetic, and small molecules inhibitors have been identified as DENV protease inhibitors. Unfortunately, none of them have resulted in a clinically approved drug. Considering all the abovementioned facts, this review descriptively explains the molecular mechanism and therapeutic potential of DENV protease along with an up to date information on various competitive inhibitors reported against DENV protease. This review might be helpful for the researchers working in this area to understand the critical aspects of DENV protease that will help them develop effective and novel inhibitors against DENV to protect lives of millions of people worldwide.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3