The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications

Author:

Gomes Sara Daniela1,Oliveira Cláudia Suellen1,Azevedo-Silva João1,Casanova Marta R.1,Barreto Judite1,Pereira Helena1,Chaves Susana R.1,Rodrigues Lígia R.2,Casal Margarida1,Côrte-Real Manuela1,Baltazar Fátima3,Preto Ana1

Affiliation:

1. CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

2. CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal

3. ICVS - Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal

Abstract

: Colorectal Cancer (CRC) is a major cause of cancer-related death worldwide. CRC increased risk has been associated with alterations in the intestinal microbiota, with decreased production of Short Chain Fatty Acids (SCFAs). SCFAs produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch. While colonocytes use the three major SCFAs, namely acetate, propionate and butyrate, as energy sources, transformed CRC cells primarily undergo aerobic glycolysis. Compared to normal colonocytes, CRC cells exhibit increased sensitivity to SCFAs, thus indicating they play an important role in cell homeostasis. Manipulation of SCFA levels in the intestine, through changes in microbiota, has therefore emerged as a potential preventive/therapeutic strategy for CRC. Interest in understanding SCFAs mechanism of action in CRC cells has increased in the last years. Several SCFA transporters like SMCT-1, MCT-1 and aquaporins have been identified as the main transmembrane transporters in intestinal cells. Recently, it was shown that acetate promotes plasma membrane re-localization of MCT-1 and triggers changes in the glucose metabolism. SCFAs induce apoptotic cell death in CRC cells, and further mechanisms have been discovered, including the involvement of lysosomal membrane permeabilization, associated with mitochondria dysfunction and degradation. : In this review, we will discuss the current knowledge on the transport of SCFAs by CRC cells and their effects on CRC metabolism and survival. The impact of increasing SCFA production by manipulation of colon microbiota on the prevention/therapy of CRC will also be addressed.

Funder

Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding

national funds through the FCT I.P. and by theERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização

EcoAgriFood

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3