2,5-Diketopiperazines: A Review of Source, Synthesis, Bioactivity, Structure, and MS Fragmentation

Author:

She Gaimei1,Jia Jia1,Yao Jianling1,Kong Jiao1,Yu Axiang1,Wei Jing1,Dong Ying1,Song Ruolan1,Shan Dongjie1,Zhong Xiangjian1,Lv Fang1,Fan Qiqi1

Affiliation:

1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China

Abstract

Background: 2,5-Diketopiperazines (DKPs), also called cyclic dipeptides, are the simplest peptide derivatives in nature that are formed by the condensation of two amino acids. They are an important category of bioactive substances with various structures. Objective: This review focuses on the natural sources, synthetic processes, biological properties and MS fragmentation regularity of simple DKPs, in order to provide a reference for exploring future scientific and therapeutic potentials of these compounds. Method: Pertinent information was collected and organized from several electronic scientific databases (e.g., Web of Science, China Knowledge Resource Integrated, ScienceDirect, PubMed, Wanfang Data and Google Scholar), PhD and MS dissertations. There are 107 articles published from the early 20th century to 2021 that were reviewed in this work. Results: DKPs have been obtained from a broad range of natural resources, including fungi, bacteria, plants, and animals, and have been synthesized by chemical and biological methods. DKPs have various pharmacological activities, including anticancer, antibacterial, antithrombotic, neuron protective, analgesic, and other activities. Mass spectrometry is the most common method for the structural analysis of DKPs. DKPs can be quickly screened and identified by MS according to the mass spectrum fragmentation pattern. Conclusion: As a category of relatively unexplored compounds, DKPs have been demonstrated to have various bioactivities, especially with antitumor and antibacterial activities. However, the existing research on DKPs is still in the early stage, and their application in drug development needs to be further studied.

Funder

National Key R&D Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3