Discovery of STAT3 Inhibitors: Recent Advances and Future Perspectives

Author:

Tian Sheng1,Li Huanqiu1,Song Jiatao1,Wang Jiawei1

Affiliation:

1. Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China

Abstract

Background: STAT3 (signal transducer and activator of transcription 3) is a member of the STAT family of proteins that function as signal transducers and transcription factors. Previous research has demonstrated its importance in cell proliferation, differentiation, apoptosis, and immunological and inflammatory responses. Targeting the STAT3 protein has recently been hailed as a viable cancer therapeutic method. Even though none of these inhibitors have yet been exploited in clinical cancer therapy, a small number have made them into clinical trials, leading researchers to explore more promising inhibitors. Methods: Based on the mechanism of STAT3 activation, several types of STAT3 inhibitors were described and summarized according to their origins, structures, bioactivity and mechanism of action. Direct inhibition of STAT3 mainly targeted one of the three distinct structural regions of the protein, namely the SH2 domain, the DNA binding domain, and the coiled-coil domain. Results: The progress in STAT3 inhibitor discovery from 2010 to 2021 is comprehensively summarized in this review. STAT3 inhibitors are mainly classified into small molecule inhibitors, natural product inhibitors, and peptides/peptidomimetics. Moreover, it also covers relevant analogues, as well as their core framework. Conclusion: Small-molecule inhibitors of STAT3 like BP-1-102 and BTP analogues displayed great potential against various cancers, while natural products, as well as peptide and peptidomimetics, also showed promising application. Therefore, STAT3 has become a promising target with great research value, and the development of STAT3 inhibitors may provide more therapeutic strategies for STAT3-related diseases.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3