Beneficial Effects of Carvacrol on In Vitro Models of Metabolically-Associated Liver Steatosis and Endothelial Dysfunction: A Role for Fatty Acids in Interfering with Carvacrol Binding to Serum Albumin

Author:

Vergani Laura1,Khalil Mohamad2ORCID,Serale Nadia2,Diab Farah1ORCID,Baldini Francesca3,Portincasa Piero2,Lupidi Giulio4

Affiliation:

1. Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Haly

2. Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy

3. Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy

4. School of Pharmacy, University of Camerino, Camerino, Italy

Abstract

Background: Carvacrol, a plant phenolic monoterpene, is largely employed as food additive and phytochemical. Objective: We aimed to assess the lipid lowering and protective effects of carvacrol in vitro using cellular models of hepatic steatosis and endothelial dysfunction. We also investigated if and how the binding of carvacrol to albumin, the physiological transporter for small compounds in the blood, might be altered by the presence of high levels of fatty acids (FAs). Methods: Hepatic FaO cells treated with exogenous FAs mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured spectrophotometrically lipid accumulation and release, lipoperoxidation, free radical production, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin in the presence or absence of high levels of FAs was assessed by absorption and emission spectroscopies. Results: Carvacrol counteracted lipid accumulation and oxidative stress in hepatocytes and protected endothelial cells from oxidative stress and dysfunction. Moreover, high levels of FAs reduced the binding of carvacrol to albumin. Conclusion: The results suggest the good potential of carvacrol in ameliorating dysfunction of hepatic and endothelial cells in vitro. High levels of circulating FAs might compete with carvacrol for binding to albumin thus influencing its transport and bio-distribution.

Funder

University of Genova

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3