Design, Synthesis, and Biological Activity of a Novel Series of 2-Ureidonicotinamide Derivatives Against Influenza A Virus

Author:

Liu Xiao-Ping1,Hu Chun1ORCID,Zhang Chao1,Xiang Jun-Jie1,Zhao Jing1,Meng Yan-Li1,Zhang Fu-Rong1,Jin Zhe1,Shaw Pang-Chui2

Affiliation:

1. Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China

2. School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

Abstract

Background: Viral resistance to existing inhibitors and the time-dependent effectiveness of neuraminidase inhibitors have limited the number of antivirals that can be used for prophylaxis and therapeutic treatment of severe influenza infection. Thus, there is an urgent need to develop new drugs to prevent and treat influenza infection. Objective: The aims of this study was to design and synthesize a novel series of 2-ureidonicotinamide derivatives and evaluate their anti-IAV activities. Furthermore, we predicted the abilities of these compounds to inhibit the PA-PB1 subunit and forecasted the docking poses of these compounds with RNA polymerase protein (PDB ID 3CM8). Method: The novel designed compounds were synthesized using classical methods of organic chemistry and tested in vitro for their abilities inhibiting RNP and against influenza A virus. In addition, the 23 synthesized molecules were subjected to the generated pharmacophore Hypo1 to forecast the activity target PA-PB1 subunit of RNA polymerase. The ADMET pharmacokinetic parameters were calculated by the ADMET modules in Discovery Studio 2016. The docking results helped us demonstrate the possible interactions between these compounds with 3CM8. Results: The synthesized 2-ureidonicotinamide derivatives were characterized as potent anti-influenza inhibitors. The target compounds 7b and 7c demonstrated significant antiviral activities and could be considered as novel lead compounds of antiviral inhibitors. In addition, compound 7b revealed suitable ADME properties expressed and might be a significant RNA polymerase inhibitor targeting the PA-PB1 subunit based on the predictable results and the docking results. Conclusion: This study revealed a novel series of compounds that might be useful in the search for an effective drug against the influenza virus.

Funder

National Science Foundation of China

Health and Medical Research Fund of Hong Kong

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging antiviral therapies and drugs for the treatment of influenza;Expert Opinion on Emerging Drugs;2022-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3