Exploring Cantharidin and its Analogues as Anticancer Agents: A Review

Author:

Du Kui1,Deng Liping1,Li Shaoting1,Wu Xufeng2,Fan Gang2

Affiliation:

1. Chemistry and Chemical Engineering Institute, Shaoxing University, Shaoxing 312000, China

2. Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China

Abstract

Background: Cantharidin (CTD) is a highly toxic substance which can be used to treat a variety of cancers. However, the clinical application of CTD is restricted due to the serious side effects. In recent years, screening its analogues, exploring the mechanism of action and using combinatory therapy with certain substances are considered to be feasible methods which can reduce side effects and improve the therapeutic activity of CTD. This review aims to describe SAR (structure-activity relationship) of CTD analogues, CTD induction mechanisms, and combinatory therapy exploration. Methods: We searched for research about CTD by entering the database. Important information was screened and extracted purposefully, including SAR, mechanisms, methods, etc. Finally, these contents were unified into a framework to form a review. Results: Some CTD analogues with imidazolium salt or double bonds at C-5 and C-6 positions demonstrate good anticancer activity. Through introducing methyl and acetoxy groups at the C-1 or C-4 position, the inhibitory effect of PP was weakened or even inactivated. Removing the two methyl groups of C-2 and C-3 can reduce side effects and improve efficacy. Replacing methyl with fluorine can also improve the activity and reduce toxicity. Water solubility and bioavailability could be improved by opening the five fivemembered anhydride ring to form carboxylic acid, salt, amide, and ester derivatives. The anticancer mechanism can be divided into the following aspects, including inhibiting cell invasion and metastasis, inducing apoptosis, regulating cell cycle and enhancing immunity. The proper formulation of CTD and its analogues (liposomes, nanoparticles and micelles) can improve the targeting of liver cancer and reduce toxic and side effects. CTD combined with anti-angiogenic therapeutics (Ginsenoside Rg3, Bevacizumab, Apatinib and Endostar) showed additive anti-pancreatic cancer effects. Conclusion: It was found that the potential mechanism was closely related to multi-channel and multi-target interactions, which provided a guiding direction for the later exploration of new clinical therapeutic applications. However, some detailed mechanisms are still unclear, and more evidence is required to verify. In addition, the new methods to improve the therapeutic potential of CTD and its analogues still need more clinical trials to be tested in the future. This prospect is very broad and worthy of further study.

Funder

Zhejiang public welfare fund project, China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3