Regulation of Exosomes-Mediated circNR4A1 on Chemoresistance and Biological Effects of Oral Squamous Cell Carcinoma Cells

Author:

Chang Huaiguang12,Dong Yang3,Zhang Lei1

Affiliation:

1. Department of Stomatology, Ningbo College of Health Sciences, Yinzhou District, Ningbo, 315100, P.R. China

2. Department of Prosthodontics, YinZhou Stomatology Hospital, Yinzhou District, Ningbo, 315100, P.R. China

3. Department of Stomatology, Daxing Teaching Hospital of Capital Medical University, Daxing District 102600, Beijing, China

Abstract

Introduction: The current study aimed to construct a circNR4A1 loaded exosome (EXO) nano system for the treatment of oral squamous cell carcinoma (OSCC) and elucidate the related regulation mechanism in chemoresistance and tumor biology. Methods: Exosomes were isolated from the HEK293 cells by the ultracentrifugation method. Then, the purified nanoproduction was characterized and identified by transmission electron microscopy, dynamic light scattering, and Western blot. The hydrophobic circNR4A1 was then loaded into exosomes by the coincubation method. The effects of circNR4A1 on chemotherapy and apoptosis were evaluated in three multiresistant OSCC cell lines. Results: The range of size distribution of the exosomes was found to be 40-170 nm. Positive TSG101 and CD63 expressions were observed, and the expression of calnexin was negative. In the cisplatin group, circNR4A1 could sensitize 67% of cell lines, while circNR4A1-EXO could sensitize 100% of cell lines. In the 5FU group, circNR4A1 could only sensitize 33% of cell lines, while circNR4A1-EXO could sensitize 67% of cell lines. circNR4A1-EXO is involved in multiple signaling pathways, which can not only activate K-RAS/ERK and MDR-1 signaling pathways but activate DNMT-1 gene expression simultaneously. Conclusion: circNR4A1-EXO can increase the sensitivity of OSCC to anticancer drugs, which may be due to the regulation of the K-RAS/ERK and p53 signaling pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3