Network Pharmacology Combined with GEO Analysis of the Mechanism of Qing-Jin-Hua-Tan Decoction in the Treatment of Non-small Cell Lung Cancer

Author:

Wei Yi1,Liu Chao2

Affiliation:

1. Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China

2. Department of Medical Image, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, China

Abstract

Background: Non-small-cell lung cancer (NSCLC) is one of the most prevalent malignancies and poses a significant threat to human health. Qing-Jin-Hua-Tan (QJHT) decoction is a classical herbal remedy that has demonstrated therapeutic effects in various diseases, including NSCLC, and can improve the quality of life of patients with respiratory conditions. However, the mechanism underlying the effect of the QJHT decoction on NSCLC remains unclear and requires further investigation. Methods: We collected NSCLC-related gene datasets from the GEO database and performed differential gene analysis, followed by using WGCNA to identify the core set of genes associated with NSCLC development. The TCMSP and HERB databases were searched to identify the active ingredients and drug targets, and the core gene target datasets related to NSCLC were merged to identify the intersecting targets of drugs and diseases for GO and KEGG pathway enrichment analysis. We then constructed a protein-protein interaction (PPI) network map of drug diseases using the MCODE algorithm and identified key genes using topology analysis. The disease-gene matrix underwent immunoinfiltration analysis, and we analyzed the association between intersecting targets and immunoinfiltration. Results: We obtained the GSE33532 dataset that met the screening criteria, and a total of 2211 differential genes were identified using differential gene analysis. We performed GSEA analysis and WGCNA analysis for a crossover with differential genes, resulting in 891 key targets for NSCLC. The drug database was screened to obtain 217 active ingredients and 339 drug targets of QJHT. By constructing a PPI network, the active ingredients of QJHT decoction were intersected with the targets of NSCLC, resulting in 31 intersected genes. Enrichment analysis of the intersection targets showed that 1112 biological processes, 18 molecular functions, and 77 cellular compositions were enriched in GO functions, and 36 signaling pathways were enriched in KEGG pathways. Based on immune-infiltrating cell analysis, we found that the intersection targets were significantly associated with multiple infiltrating immune cells. Conclusion: Our analysis using network pharmacology and mining of the GEO database revealed that QJHT decoction can potentially treat NSCLC through multi-target and multi-signaling pathways, while also regulating multiple immune cells.

Funder

Qingdao Scientific Plan of Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3