Integrated Approach of Retrofitting an Existing Residential Building to a Nearly Zero Energy Building with Simultaneous Seismic Upgrading

Author:

Pamboris George,Christis Z. Chrysostomou,Kalogirou Soteris A.,Paul Christodoulides

Abstract

Introduction The current study's goal is to apply an integrated approach of retrofitting a typical building in Cyprus that was designed and constructed for the refugee settlements in the period 1975-1985. The existing building is retrofitted to a nearly zero-energy building. Methods This typical type of building examined represents approximately 15,347 houses and stands for 3.57% of households in Cyprus. This percentage is considered significant with regards to energy consumption, as this type of structure has an estimated energy consumption of 1000 kWh/m2/y and CO2 emissions of 293.74kg CO2/m2/y. This corresponds to 0.293 Mt CO2/y, which stands for 4.18% of total CO2 emissions in Cyprus for 2011, based on the latest IEA (International Energy Agency) data. An integrated approach is followed for the retrofitting of the existing building, which involves both energy and structural upgrades, taking into account the earthquake resistance upgrade. Since Cyprus is in a highly seismic region, an important factor in this approach is the ability of the structure to survive a strong earthquake during its remaining lifetime, according to the design criteria. The study presents and discusses three possible coalitions with multiple scenarios of approaching the upgrade of the existing building. In each coalition, various criteria and implementation actions are considered based on the energy consumption, the CO2 footprint, and the seismic resistance. Results The study also investigates whether the extension of life expectancy of the existing structure through earthquake resistance upgrade will have a positive or negative effect on the CO2 life cycle footprint and cost of the building. Results show that for the examined typical building, simultaneous energy and earthquake resistance upgrade is more efficient in terms of cost and environmental impact. The building with the smallest construction age had the smallest Decision-Making Index (DMI) from the A, B and C coalitions. Conclusion It is important that for an existing building, the option to remain in its original state (coalition A) without any upgrading intervention is not the most favorable option. Therefore, the need to evaluate the existing building stock and plan the upgrade of the buildings in question is of utmost importance.

Publisher

Bentham Science Publishers Ltd.

Reference37 articles.

1. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008; 40 (3) : 394-8.

2. Net Zero Energy Buildings Database, SHC Home, ECBS Home Task, Annex Home, Case Studies Home 2013.

3. Total final consumption (TFC) by sector, Cyprus 1990. WORLD 2017; 1990-2017.

4. Laustsen J. Energy efficiency requirements in building codes, energy efficiency policies for new buildings. buildings. 2008. Available from: http://www.iea.org/g8/2008/Building_Codes.pdf

5. EN 15459:2007 Energy performance of buildings - Economic evaluation proce-dure for energy systems in buildings (Withdrawn). 2008. Available from: https://standards.iteh.ai/catalog/standards/cen/052a18f5-9119-461c-9cf6-c6ab894f441d/en-15459-2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3