Umbilical Cord Mesenchymal Stem Cells Combined with Fufang Xueshuantong Capsule Attenuate Oxidative Stress and Vascular Lesions in Diabetic Rats by Activating Nrf-2/HO-1 Signaling Pathway

Author:

Sun Yunchao1ORCID,Li Yongzhang2,Gao Xueliang3,Gao Limin4,Yang Bingqi4,Zhao Jianing1

Affiliation:

1. Department of Vascular Surgery, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China

2. Department of Urology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China

3. Department of Neurosurgery, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China

4. Department of Conduit Room, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China

Abstract

Background:: Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the aim of this study was to reveal the role of FXC + UCMSCs in T2DM vasculopathy and their potential mechanism in the treatment of T2DM. Methods:: The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks. Results:: We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury. Conclusion:: Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3