A Molecular Cascade Underlying Articular Cartilage Degeneration

Author:

Xu Lin1ORCID,Li Yefu1ORCID

Affiliation:

1. Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States

Abstract

Preserving of articular cartilage is an effective way to protect synovial joints from becoming osteoarthritic (OA) joints. Understanding of the molecular basis of articular cartilage degeneration will provide valuable information in the effort to develop cartilage preserving drugs. There are currently no disease-modifying OA drugs (DMOADs) available to prevent articular cartilage destruction during the development of OA. Current drug treatments for OA focus on the reduction of joint pain, swelling, and inflammation at advanced stages of the disease. However, based on discoveries from several independent research laboratories and our laboratory in the past 15 to 20 years, we believe that we have a functional molecular understanding of articular cartilage degeneration. In this review article, we present and discuss experimental evidence to demonstrate a sequential chain of the molecular events underlying articular cartilage degeneration, which consists of transforming growth factor beta 1, high-temperature requirement A1 (a serine protease), discoidin domain receptor 2 (a cell surface receptor tyrosine kinase for native fibrillar collagens), and matrix metalloproteinase 13 (an extracellularmatrix degrading enzyme). If, as we strongly suspect, this molecular pathway is responsible for the initiation and acceleration of articular cartilage degeneration, which eventually leads to progressive joint failure, then these molecules may be ideal therapeutic targets for the development of DMOADs.

Funder

NIH/NIAMS

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3