Computational Investigation of Endophytic Fungal (Penicillium citrinum CGJ-C2) Compound and Its In-silico Derivatives for the Inhibition of RNA-Dependent RNA Polymerase of SARS-CoV-2

Author:

Poyya Jagadeesha12ORCID,Danagoudar Ananda1ORCID,Joshi Chandrasekhar G1ORCID,Khandagale Ajay S2ORCID,Narayanappa Govinda Raju3

Affiliation:

1. Department of Studies in Biochemistry, Mangalore University, Mangalagangothri, 574199, India

2. Department of Biomedical Sciences, SDM Research Institute for Biomedical Sciences (SDMRIBS), Shri Dharmasthala Manjunatheshwara University, Sattur Dharwad, 58009, India

3. Department of Biotechnology, Karnataka State Open University, Mukthagangothri, Mysore, 570 006, India

Abstract

Background: The SARS-CoV2 was responsible for the pandemic situation across the world. SARS-CoV2 is an RNA virus, and its replication depends on RNA Dependent RNA Polymerase (RdRp). Hence, blocking of RdRP would be an alternative strategy to inhibit the virus multiplication without affecting the host physiology. Objective: The current study investigated the inhibitory effect of bioactive compound F3 isolated from P. citrinum CGJ-C2 and its in-silico derivates against RdRp of COVID using computational methods. Methods: Compound F3 and its derivatives were generated computationally, and the crystal structure of RdRp was processed prior to docking. The RdRp and the bioactive compounds were docked using Glide with three levels of precisions. Post-docking MMGBSA analysis and Molecular Dynamic simulations were carried out to study the stability of the docking interactions. Results: Based on the Glide XP score and MMGBSA analysis of fifteen ligands, three leads were selected, compound F3 (-8.655 Kcal/mol), D-1(-8.295 Kcal/mol), and D-14(-8.262 Kcal/mol). These leads (Compound F3, D-1, and D-14) were further evaluated using molecular dynamics (MD) simulation. MD simulations studies showed the stable bonding interaction between LYS500 and ARG569 residues of RdRp with the three lead molecules. Conclusion: Our study highlighted the potential of compounds in terms of binding, interaction stability, and structural integrity. Therefore, these leads can be chosen for further studies in in vitro and in vivo to develop a novel anti-SARS-CoV2 agent with minimal side effects.

Publisher

Bentham Science Publishers Ltd.

Subject

Infectious Diseases,Virology,Pulmonary and Respiratory Medicine,Immunology and Microbiology (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3