In Vitro Metabolic Profiling of Periplogenin in Rat Liver Microsomes and its Associated Enzyme-kinetic Evaluation

Author:

Feng Yingshu1,Wan Jinyi1,Chen Baoding2,Zhu Yuan1,Firempong Caleb Kesse1,Feng Chunlai1,Imai Teruko3,Xu Ximing1,Yu Jiangnan1

Affiliation:

1. Center for Nano Drug/Gene Delivery and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China

2. Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China

3. Department of Metabolism-based Drug Design and Delivery, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 0e-honmachi, Kumamoto, 862-0973, Japan

Abstract

Background: Periplogenin, an active ingredient in Cortex Periplocae, is widely noted for its multiple biological activities; however, the metabolism of this compound has been scarcely investigated. The present report proposed the in vitro metabolic profiling and reaction pathways of periplogenin in rat liver microsomes. Method and Results: The metabolites of periplogenin in rat liver microsomes were analyzed. Two main metabolites, namely 14-hydroxy-3-oxo-14β-carda-4, 20 (22)-dienolide and 5, 14-dihydroxy-3-oxo-5β, 14β-card-20(22)-enolide were identified by HPLC-MSn, 1H-NMR and 13C-NMR. HPLC method was established for the simultaneous determination of periplogenin and its related metabolites (M0, M1 and M2), which was performed on Waters ODS column with a methanol-water solution (53:47, v/v) as mobile phase and descurainoside as an internal standard at 220 nm. The linearity ranges of M0, M1 and M2 were 0.64-820.51, 0.68-864.86 and 0.64-824.74 μM respectively with the regression coefficient (R2) above 0.9995. The limits of quantitation for these metabolites (M0, M1 and M2) were 0.18, 0.22 and 0.15 μM respectively. The developed method was also accurate (with relative errors of -3.6% to 3.2%) and precise (with relative standard deviations below 7.9%). The recoveries of the three analytes were above 85.7% with stability in the range of -2.4% to 3.6%. The enzyme-kinetic parameters of periplogenin including Vmax (6.08 ± 0.19 nmol/mg protein/min), Km (288.62 ± 14.54 μM) and Clint (21 ± 1.0 μL/min/mg protein) were calculated using nonlinear regression analysis. Conclusion: These findings significantly highlighted the metabolic pathways of periplogenin and also provided some reference data for future pharmacokinetic and pharmacodynamic studies.

Funder

National Natural Science Foundation of China

Industry-University-Research Institution Cooperation in Zhenjiang, Jiangsu Province

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3