Investigation of the Pharmacokinetic Properties and Theoretical Chemical Activities of 7,8-Dihydroxyflavone and 4'-Dimethylamino-7,8-Dihydroxyflavone

Author:

Karakaya Muhammed Fatih1ORCID,Gokalp Faik2ORCID,Sener Erol3ORCID,Korkmaz Orhan Tansel1ORCID

Affiliation:

1. Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey

2. Department of Mathematics and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey

3. Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey

Abstract

Aims: Flavonoids naturally exist in plants as secondary metabolites. In this study, the aim is to determine and compare the theoretical and in vivo chemical activities of 7,8- dihydroxyflavone (7,8-DHF) and 4'dimethylamino-7,8-dihydroxyflavone (4’-DMA-7,8-DHF), tyrosine receptor kinase B (TrkB) receptor agonist flavonoid molecules with reported potent neuroprotective effects. Methods: The density functional theory (DFT) (RB3LYP) method was used for the theoretical chemical analysis. For the in vivo studies, 6-month-old Wistar rats were used in two groups (n=8). 7,8-DHF and 4’-DMA-7,8-DHF (5 mg/kg) were administered intraperitoneally (ip) to each group. Then, plasma samples were collected by carotid catheterization, and brain samples by the microdialysis technique were collected simultaneously for 12 h from awake rats. The level of 7,8-DHF and 4’-DMA-7,8-DHF in blood and brain samples were analyzed and their pharmacokinetics were determined. Results: Theoretical calculations show that 7,8-DHF is slightly more stable than 4’-DMA-7,8- DHF. The in vivo pharmacokinetic results show that the maximum concentration of 7,8-DHF was about 48 ng/mL, whereas it was only 8 ng/mL for 4’-DMA-7,8-DHF. Conclusion: Our results suggest that the 4'-DMA-7,8-DHF is more unstable and is more prone to binding to TrkB than 7,8-DHF. On the other hand, the in vivo pharmacokinetic results show that 7,8-DHF is more stable than 4’-DMA-7,8-DHF when it is applied systemically at therapeutic concentrations.

Funder

Eskisehir Osmangazi University Scientific Research Projects Committee

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3