Iris Recognition based on Statistically Bound Spatial Domain Zero Crossing and Neural Networks

Author:

Sudheesh K V,Puttegowda Kiran,Patil Chandrashekar M.,Ravi Vinayakumar,Al Mazroa Alanoud

Abstract

Purpose The iris pattern is an important biological feature of the human body. The recognition of an individual based on an iris pattern is gaining more popularity due to the uniqueness of the pattern among the people. Iris recognition systems have received attention very much due to their rich iris texture which gives robust standards for identifying individuals. Notwithstanding this, there are several challenges in unrestricted recognition environments. Methods This article discusses a highly error-resistant technique to implement a biometric recognition system based on the iris portion of the human eye. All iris recognition algorithms of the current day face a major problem of localization errors and the enormous time involved in this localization process. Spatial domain zero crossing may be the simplest and least complex method for localization. Yet, it has not been used due to its high sensitivity to erroneous edges, as a consequence of which more complex and time-consuming algorithms have taken its place. Appropriate statistical bounds imposed on this process help this method to be the least erroneous and time-consuming. Errors were reduced to 0.022% using this approach on the CASIA v1 & v2 datasets. Time consumption in this stage was the least compared to other algorithms. At the comparison stage, most algorithms use multiple comparisons to account for translation and rotation errors. This is time-consuming and very resource-hungry. Results The current approach discusses a robust method based on a single comparison, which works with a correct recognition of over 99.78% which is clearly demonstrated by tests. Conclusions The technique is to use a neural network trained to recognize special statistical and regional parameters unique to every person’s iris. The algorithm also gives sufficient attention to consider illumination errors, elliptical pupils, excess eyelash errors and bad contrast.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3