Upregulation of miR-496 Rescues Propofol-induced Neurotoxicity by Targeting Rho Associated Coiled-coil Containing Protein Kinase 2 (ROCK2) in Prefrontal Cortical Neurons

Author:

Mao Zemei1,Wang Wanju2,Gong Haixia3ORCID,Wu Yinghui1,Zhang Yang3,Wang Xinlei3

Affiliation:

1. Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430016, China

2. Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan City, Hubei Province, 430015, China

3. Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330006, China

Abstract

Objective: Early exposure to general anesthesia in children might be a potentially highrisk factor for learning and behavioral disorders. The mechanism of neurotoxicity induced by general anesthesia was not defined. miR-496 could regulate cerebral injury, while the roles of miR- 496 in neurotoxicity were not elucidated. Therefore, we aimed to investigate the effects of miR- 496 in neurotoxicity induced by propofol. Methods: Primary Prefrontal Cortical (PFC) neurons were isolated from neonatal rats and treated with propofol to induce neurotoxicity. Cell viability was detected by (3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The target relationship of miR-496 and Rho Associated Coiled-Coil Containing Protein Kinase 2 (ROCK2) was explored using luciferase assays. Results: Propofol decreased cell viability, promoted cell apoptosis, and decreased the expression of miR-496 in PFC neurons in a dose-dependent manner. Overexpression of miR-496 attenuated neurotoxicity induced by propofol in PFC neurons. ROCK2 was a target of miR-496, and miR-496 oppositely modulated the expression of ROCK2. Besides, propofol increased the expression of ROCK2 through inhibiting miR-496 in PFC neurons. Overexpression of miR-496 attenuated propofol- induced neurotoxicity by targeting ROCK2 in PFC neurons. Conclusion: miR-496 was decreased in PFC neurons treated with propofol, and overexpression of miR-496 attenuated propofol-induced neurotoxicity by targeting ROCK2. miR-496 and ROCK2 may be promising targets for protecting propofol-induced neurotoxicity.

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

Reference32 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3