Recombinant Expression, Purification and PEGylation of DNA Ligases

Author:

Pooe Ofentse Jacob1ORCID,Zuma Lindiwe Khumbuzile1ORCID,Gasa Nothando Lovedale1,Mazibuko Xolani1ORCID,Simelane Mthokozisi Blessing C.2ORCID,Pillay Priyen3ORCID,Kwezi Lusisizwe3ORCID,Tsekoa Tsepo3ORCID

Affiliation:

1. Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa

2. Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa

3. Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa

Abstract

Background: Reagent proteins such as DNA ligases play a central role in the global reagents market. DNA ligases are commonly used and are vital in academic and science research environments. Their major functions include sealing nicks by linking the 5’-phosphorylated end to a 3’-hydroxyl end on the phosphodiester backbone of DNA, utilizing ATP or NADP molecules as an energy source. Objective: The current study sought to investigate the role of PEGylation on the biological activity of purified recombinant DNA ligases. Method: We produced two recombinant DNA ligases (Ligsv081 and LigpET30) using E. coli expression system and subsequently purified using affinity chromatography. The produced proteins wereconjugated to site specific PEGylation or non-specific PEGylation. FTIR and UV-VIS spectroscopy were used to analyze secondary structures of the PEG conjugated DNA ligases. Differential scanning fluorimetry was employed to assess the protein stability when subjected to various PEGylation conditions. Results: In this study, both recombinant DNA ligases were successfully expressed and purified as homogenous proteins. Protein PEGylation enhanced ligation activity, increased transformation efficiency by 2-foldfor plasmid ligations and reduced the formation of protein aggregates. Conclusion: Taken together, site-specific PEGylation can potentially be explored to enhance the biological activity and stability of reagent proteins such as ligases.

Funder

South African Department of Science and Innovation and the South African National Research foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3