Acetogenin Extracted from Annona muricata Prevented the Actions of EGF in PA-1 Ovarian Cancer Cells

Author:

Periyasamy Loganayaki1ORCID,Muruganantham Bharathi2ORCID,Deivasigamani Malarvizhi1ORCID,Lakshmanan Hariprasath1ORCID,Muthusami Sridhar1ORCID

Affiliation:

1. Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India

2. Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India

Abstract

Background: In individuals with ovarian cancer, an increase in the circulating level of the epidermal growth factor (EGF) is readily apparent. Ovarian cancer cells exhibit signaling pathway of the epidermal growth factor (EGFR) and respond to the EGF. Annona muricata (AM) has been shown to decrease ovarian cell proliferation however, role of AM in regulating EGF actions is not yet to be reported. Objective: In this study, we proposed that the fractionated compound acetogenin can inhibit the activation of EGFR-regulated signaling cascades such as MAPK7 / PI3K-Akt / mTOR / STAT upon EGF stimulation. Methods: Ethanolic extract was prepared for the whole AM plant and Thin Layer Chromatography (TLC) was performed to characterize the secondary metabolites and each fraction was assessed using kedde reagent for the presence of acetogenin. The effects of acetogenins were then tested on the survival of PA-1 ovarian cancer cells under basal and EGF stimulated conditions. To delineate the role of acetogenin in EGFR signaling cascades, the in silico docking studies were conducted. Results: The fraction of acetogenin decreased the viability of EGF induced PA-1 ovarian cancer cells that indicating the EGF inhibitory effects of acetogenin. The docking studies specifically illustrated that when the acetogenin binding with tyrosine kinase (TK) and regulatory unit (RU) which subsequently resulted in a reduction in EGF induced the survival of PA-1 ovarian cancer cells. Discussion: The vital regulatory role of acetogenin reported in this study indicate significant anticancer activities of acetogenin from AM. The in silico study of the acetogenin function predicted that it binds specifically to Asp837 (phosphor-acceptor site) of EGFR, essential for phosphorylation of substrates in the TK domain and RU which promote downstream signaling. Conclusion: Acetogenin isolated from AM effectively inhibited the survival of PA-1 ovarian cancer cells through impaired EGF signaling.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3