Gamma-mangostin Protects S16Y Schwann Cells Against tert-Butyl Hydroperoxide-induced Apoptotic Cell Death

Author:

Charoensuksai Purin1,Arunprasert Kwanputtha2,Saenkham Audchara3,Opanasopit Praneet2,Suksamrarn Sunit3,Wongprayoon Pawaris1ORCID

Affiliation:

1. Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand

2. Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand

3. Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand

Abstract

Background: Peripheral neuropathy is a common complication that affects individuals with diabetes. Its development involves an excessive presence of oxidative stress, which leads to cellular damage in various tissues. Schwann cells, which are vital for peripheral nerve conduction, are particularly susceptible to oxidative damage, resulting in cell death. Materials and Methods: Gamma-mangostin (γ-mangostin), a xanthone derived from Garcinia mangostana, possesses cytoprotective properties in various pathological conditions. In this study, we employed S16Y cells as a representative Schwann cell model to investigate the protective effects of γ-mangostin against the toxicity induced by tert-Butyl hydroperoxide (tBHP). Different concentrations of γ-mangostin and tBHP were used to determine non-toxic doses of γ-mangostin and toxic doses of tBHP for subsequent experiments. MTT cell viability assays, cell flow cytometry, and western blot analysis were used for evaluating the protective effects of γ-mangostin. Results: The results indicated that tBHP (50 μM) significantly reduced S16Y cell viability and induced apoptotic cell death by upregulating cleaved caspase-3 and cleaved PARP protein levels and reducing the Bcl- XL/Bax ratio. Notably, pretreatment with γ-mangostin (2.5 μM) significantly mitigated the decrease in cell viability caused by tBHP treatment. Furthermore, γ-mangostin effectively reduced cellular apoptosis induced by tBHP. Lastly, γ-mangostin significantly reverted tBHP-mediated caspase-3 and PARP cleavage and increased the Bcl-XL/Bax ratio. Conclusion: Collectively, these findings highlight the ability of γ-mangostin to protect Schwann cells from apoptotic cell death induced by oxidative stress.

Funder

National Research Council of Thailand

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3