Neurotoxic Effects of Nanoparticles and their Pathogenesis

Author:

Sunena 1ORCID,Tomar Deepali1,Jawla Sunil1

Affiliation:

1. Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India

Abstract

Abstract: A recent study on the deployment of nanoparticles in the consumer and healthcare sectors has shown highly serious safety concerns. This is despite the fact that nanoparticles offer a vast array of applications and great promise. According to studies on how nanoparticles interact with neurons, the central nervous system experiences both negative and positive impacts central nervous system. With a maximum concentration of 0.1-1.0 wt.%, nanoparticles can be incorporated into materials to impart antibacterial and antiviral properties. Depending on the host or base materials utilised, this concentration may be transformed into a liquid phase release rate (leaching rate). For instance, nanoparticulate silver (Ag) or copper oxide (CuO)-filled epoxy resin exhibits extremely restricted release of the metal ions (Ag+ or Cu2+) into their surroundings unless they are physically removed or deteriorated. Nanoparticles are able to traverse a variety of barriers, including the blood-brain barrier (BBB) and skin, and are capable of penetrating biological systems and leaking into internal organs. In these circumstances, it is considered that the maximum drug toxicity test limit (10 g/ml), as measured in artificial cerebrospinal solution, is far lower than the concentration or dosage. As this is a fast-increasing industry, as the public exposure to these substances increases, so does their use. Thus, neurologists are inquisitive about how nanoparticles influence human neuronal cells in the central nervous system (CNS) in terms of both their potential benefits and drawbacks. This study will emphasise and address the significance of nanoparticles in human neuronal cells and how they affect the human brain and its activities

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3