The Sojourn of Polymeric Micelles for Effective Brain Drug Delivery System

Author:

Kaur Prabhjot1,Rajput Ankita1,Singh Dilpreet2,Singh Gurdeep3,Mehra Anshula3,Kaur Sarabjit3,Bedi Neena3,Arora Saroj1

Affiliation:

1. Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India

2. Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India

3. Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India

Abstract

Abstract: The brain is a delicate organ and targeting neurological diseases with conventional approaches is still a daunting task. This is due to the presence of necessary physiological barriers, mainly the blood-brain barrier, that blocks the entry of dangerous and poisonous substances from the bloodstream, thus helping in maintaining homeostasis. Furthermore, the presence of multidrug resistance transporters which act by prohibiting the entry of drugs across the cell membrane and by channelizing them to the outside environment is another defense mechanism. Despite the advancements in the understanding of disease pathology, only a restricted number of drugs and drug therapies can treat and target neurological diseases. To overcome this shortcoming, the therapeutic approach using amphiphilic block copolymers - using polymeric micelles has gained momentum because of its wide applications like drug targeting, delivery, and imaging. Polymeric micelles are nanocarriers that arise when amphiphilic block copolymers spontaneously assemble in aqueous solutions. The hydrophobic core–hydrophilic shell configuration of these nanoparticles makes it easier to load hydrophobic drugs into the core and as a result, the solubility of these medications is improved. Micelle-based drug delivery carriers can target the brain with reticuloendothelial system uptake and produce a long-circulating effect. PMs can also be combined with targeting ligands that increase their uptake by specific cells and thus decreasing off-target effects. In the present review, we primarily focused on polymeric micelles for brain delivery along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials for brain delivery.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3