In vitro Function Study of Different Negative Charge Pullulan Nanoparticles for Sentinel Lymph Node Angiography

Author:

Huang Ren Feng1,Guo Yan1,Yao Chaoling1,Wu Wanming1,Ou Linyang1

Affiliation:

1. Department of Breast Surgery, Yue Bei People's Hospital, Shaoguan, China

Abstract

Backgroud: Many dyes or radioactive markers used for sentinel lymph node (SLN) have the shortcomings of false positive and radiation injury. Indocyanine green (ICG) seems to have a lower false positive rate and tissue damage, without a clear field of vision during the operation. Methods: For the shortcomings, we successfully synthesized three anionic pullulan materials, changed the degree of hydrophobic for size controlling (< 50nm) to prepare CHP nanoparticles (NPs) and changed the succinyl degree to prepare CHPC NPs with different negative surface potential. Results: The size of those NPs were less than 50nm under (transmission electron microscope) TEM, with hydrodynamic size of 90.67±2.2nm of CHP, 105.8±1.7nm of CHPC1 and 115.9±2.3nm of CHPC2. Moreover, the Zeta potential of CHP, CHPC1 and CHPC2 were -1.9±0.2mV, -9.6±0.3mV and -19.4±0.7mV. The size of ICG-loading CHP, CHPC1 and CHPC2 NPs increased to 109.4±2.7nm, 113.8±1.2nm and 30.6±3.5 nm, as the zeta potential decreased to -2.7±0.4mV, -12.5±1.6mV and -23.1 ±1.2mV. With the increasing degree of succinyl, the size increased and the zeta potential decreased. At the same time, the higher degree of succinyl drug-loading NPs have lower release and have increased the stability of ICG. We found that the blank-NPs had no significant toxicity to normal cells (HSF), as the ICG@CHP group had larger toxicity than the CHPCs and control. Moreover, the cellular uptake was decreased with the increased degree of succinyl. Conclusion: In this study, we successfully prepared CHPC2 carriers with the maximum negative surface charge, for follow-up research and providing new ideas for SLN.

Funder

Science and Technology Planning Project of Shaoguan

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3