PSMA PET/MR is a New Imaging Option for Identifying Glioma Recurrence and Predicting Prognosis

Author:

Xiong Min12,Chen Zhenghe34,Zhou Chao32,Yang Xiaochun32,Hu Wanming35,Jiang Yongluo32,Zheng Rongliang32,Fan Wei32,Mou Yonggao34,Lin Xiaoping32

Affiliation:

1. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

2. Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

3. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

4. Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

5. Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China

Abstract

Background: Glioma is characterized by a high recurrence rate, while the results of the traditional imaging methods (including magnetic resonance imaging, MRI) to distinguish recurrence from treatment-related changes (TRCs) are poor. Prostate-specific membrane antigen (PSMA) (US10815200B2, Deutsches Krebsforschungszentrum, German Cancer Research Center) is a type II transmembrane glycoprotein overexpressed in glioma vascular endothelium, and it is a promising target for imaging and therapy. Objective: The study aimed to assess the performance of PSMA positron emission tomography/ magnetic resonance (PET/MR) for diagnosing recurrence and predicting prognosis in glioma patients. Materials and Methods: Patients suspected of glioma recurrence who underwent 18F-PSMA-1007 PET/MR were prospectively enrolled. Eight metabolic parameters and fifteen texture features of the lesion were extracted from PSMA PET/MR. The ability of PSMA PET/MR to diagnose glioma recurrence was investigated and compared with conventional MRI. The diagnostic agreement was assessed using Cohen κ scores and the predictive parameters of PSMA PET/MR were obtained. Kaplan-Meier method and Cox proportional hazard model were used to analyze recurrence- free survival (RFS) and overall survival (OS). Finally, the expression of PSMA was analyzed by immunohistochemistry (IHC). Results: Nineteen patients with a mean age of 48.11±15.72 were assessed. The maximum tumorto- parotid ratio (TPRmax) and texture features extracted from PET and T1-weighted contrast enhancement (T1-CE) MR showed differences between recurrence and TRCs (all p <0.05). PSMA PET/MR and conventional MRI exhibited comparable power in diagnosing recurrence with specificity and PPV of 100%. The interobserver concordance was fair between the two modalities (κ = 0.542, p = 0.072). The optimal cutoffs of metabolic parameters, including standardized uptake value (SUV, SUVmax, SUVmean, and SUVpeak) and TPRmax for predicting recurrence were 3.35, 1.73, 1.99, and 0.17 respectively, with the area under the curve (AUC) ranging from 0.767 to 0.817 (all p <0.05). In grade 4 glioblastoma (GBM) patients, SUVmax, SUVmean, SUVpeak, TBRmax, TBRmean, and TPRmax showed improved performance of AUC (0.833-0.867, p <0.05). Patients with SUVmax, SUVmean, or SUVpeak more than the cutoff value had significantly shorter RFS (all p <0.05). In addition, patients with SUVmean, SUVpeak, or TPRmax more than the cutoff value had significantly shorter OS (all p <0.05). PSMA expression of glioma vascular endothelium was observed in ten (10/11, 90.9%) patients with moderate-to-high levels in all GBM cases (n = 6/6, 100%). Conclusion: This primitive study shows multiparameter PSMA PET/MR to be useful in identifying glioma (especially GBM) recurrence by providing excellent tumor background comparison, tumor heterogeneity, recurrence prediction and prognosis information, although it did not improve the diagnostic performance compared to conventional MRI. Further and larger studies are required to define its potential clinical application in this setting.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Cancer Research,Drug Discovery,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3