Targeting Ferroptosis as a New Approach for Radiation Protection and Mitigation

Author:

Shaghaghi Zahra12ORCID,Salari Arsalan3ORCID,Jalali Fatemeh3,Alvandi Maryam24ORCID,Farzipour Soghra35ORCID,Zarei Polgardani Nasim6

Affiliation:

1. Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

2. Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

3. Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

4. Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan

5. Department of Radiopharmacy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran

6. Department of Pharmacognosy, Faculty of pharmacy, Mazandaran University of Medical Science, Sari, Iran

Abstract

Abstract: Radiation-induced normal cell toxicity (RINCT) is a major factor to consider while treating any ailment with radiotherapy. Clinical irradiation of tumors necessitates an understanding of the potential efficacy of radiation protective agents in reducing radiation damage to healthy tissues and their effects on tumor tissue radiosensitivity. Ferroptosis is a relatively new form of iron-dependent cell death that has been linked to a variety of disease pathologies. The key mediators of ferroptosis have been identified as lipid peroxidation and iron metabolism. Lipid peroxidation is the result of a reaction between reactive oxygen (ROS) and reactive nitrogen species (RNS) with phosphatidylethanolamine-containing polyunsaturated fatty acids (PUFAs). Ferroptosis inhibitors have been demonstrated to have anti-inflammatory effects in animal models of disease. It was recently shown that ionizing radiation (IR) generates severe ferroptosis, a critical component of RT-mediated normal cell toxicity. These findings support the use of ferroptosis inhibitor treatments for the treatment of radiation normal cell toxicity. Targeting lipid metabolic substrates and controlling ferroptosis by radiation could reduce toxicity and improve clinical outcomes. In this study, we address the relationships between radiotherapy and various types of radiation-induced cell death, and we discuss the interactions between ferroptosis and other kinds of controlled cell death generated by radiotherapy, and we investigate combination treatment options targeting ferroptosis in radiotherapy. This review will be a foundation for future research on ferroptosis in radiotherapy. Additionally, the relevant patents on ferroptosis inhibitors with various therapeutic potentials have been discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Cancer Research,Drug Discovery,Oncology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3